
SciBooNE (P-954) Proposal

K2K *Sci*Bar detector at FNAL *Boo*ster *N*eutrino *E*xperiment

T. Nakaya (Kyoto) and M. Wascko (LSU) for the SciBooNE Collaboration

- Combine well developed detector with well understood running beam
 - Short timescales and modest cost
- Precise knowledge of σ s necessary for T2K and other experiments
 - Non quasi-elastic ν interactions
- MiniBooNE near detector.
 - Confirmation, redundancy for BNB vs
- Antineutrinos
 - Currently unexplored physics territory.

Collaboration Members

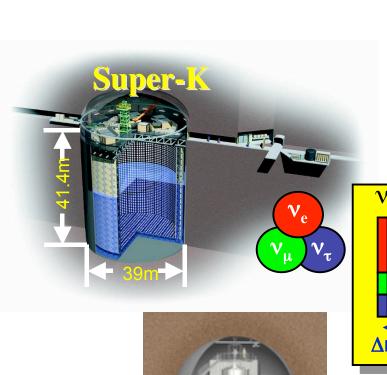
- Barcelona
- Colorado
- Columbia
- FNAL
- KEK
- Kyoto
- LANL
- LSU
- Rome
- Stratton Mtn
- Valencia

- F. Sanchez, J. Alcaraz, S. Andringa, X. Espinal, G. Jover, T. Lux, F. Nova, A. Y. Rodriguez
- M. Wilking, E.D. Zimmerman
- J. Conrad, M. Shaevitz, K. B. M. Mahn, G. P. Zeller
- S. J. Brice, B.C. Brown, D. Finley, T. Kobilarcik, R. Stefanski
- T. Ishii
- T. Nakaya, M. Yokoyama, H. Tanaka, K. Hiraide, Y. Kurimoto, K. Matsuoka, M. Taguchi, Y. Kurosawa
- W.C. Louis, R. Van de Water
- W. Metcalf, M. O. Wascko
- L. Ludovici, U. Dore, P. F. Loverre, C. Mariani
- L.Bugel
- J. J. Gomez-Cadenas, A. Cervera, M. Sorel, A. Tornero, J. Catala, P. Novella, E. Couce, J. Martin-Albo

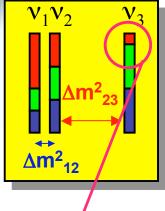
11 institutes, 45 people

(*) Potential Ph.D. thesis students, Institute representative

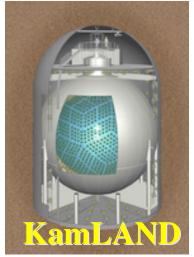
Outline of this presentation

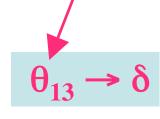

- 1. Highlights
- 2. Introduction
 - 1. Neutrino Physics
 - 2. Neutrino Cross Sections
- 3. SciBooNE Overview
 - 1. Physics Motivation
 - 2. FNAL Booster Neutrinos
 - 3. SciBar Detector
- 4. SciBooNE Physics
 - 1. Overview
 - 2. Neutrino Run
 - 3. Antineutrino Run
- 5. Logistics
- 6. Conclusion

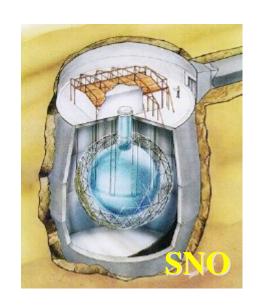
Nakaya


Wascko

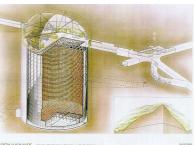
2. Introduction

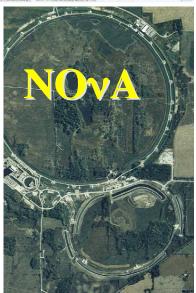

• Neutrino Oscillations (1998-2005)

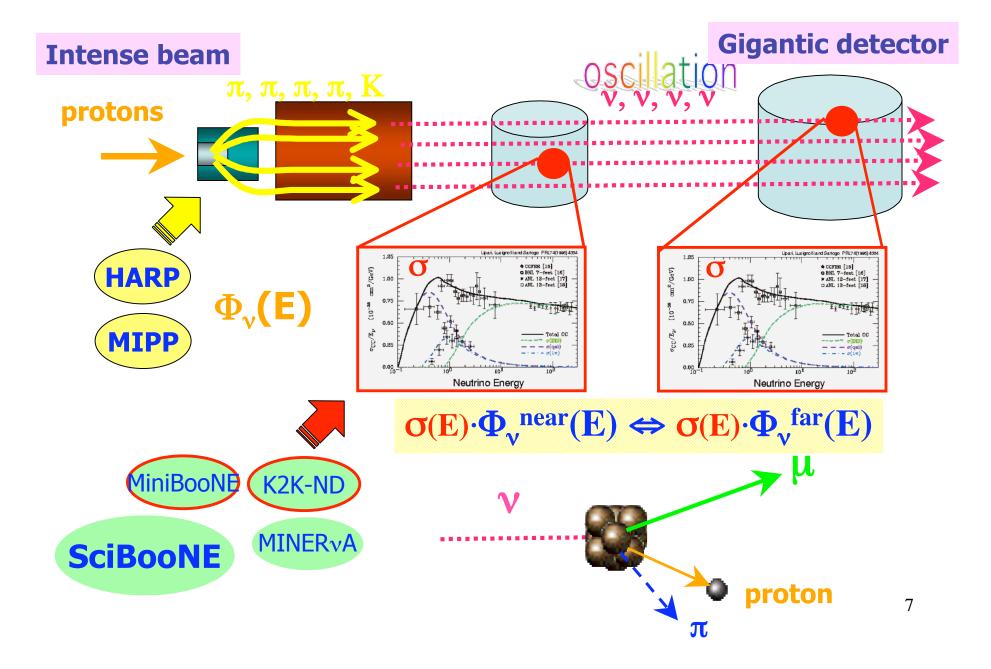




Neutrino masses $(\Delta m_{12}^2, \Delta m_{23}^2)$ Mixing Angles $(\theta_{12}, \theta_{23})$

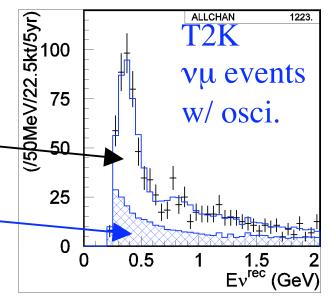





Next Step (2006-2015)

- Discover the last oscillation channel
 - θ_{13}
- CP violation in the lepton sector (v, \overline{v})
 - δ
- Mass hierarchy
 - The sign of Δm_{23}^2
- Test of the standard ν oscillation scenario (U_{MNS})
 - Precise measurements of v oscillations ($\pm \Delta m_{23}^2$, θ_{23})

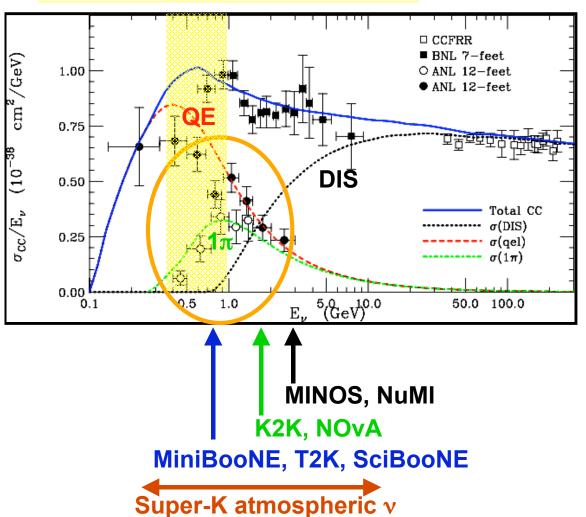
Strategy of accelerator ν oscillation experiments.


Impact of Neutrino Cross sections on oscillation measurements

- $v_{\mu} \rightarrow v_{\mu}$: precision measurements (θ_{23} and Δm_{23}^{2})
 - Signal: CC-QE (ν +n→ μ +p) -
 - Energy Reconstruction from μ kinematics
 - Background: Mainly CC-1π[±] (ν+N→μ+π+N')
 - Cross section with the visibility of π

- Signal: CC-QE (ν+n→e+p)
- Background
 - Beam v_e
 - $NC\pi^0$
 - Cross section as a function of the momentum

Anti-v for CP violation study

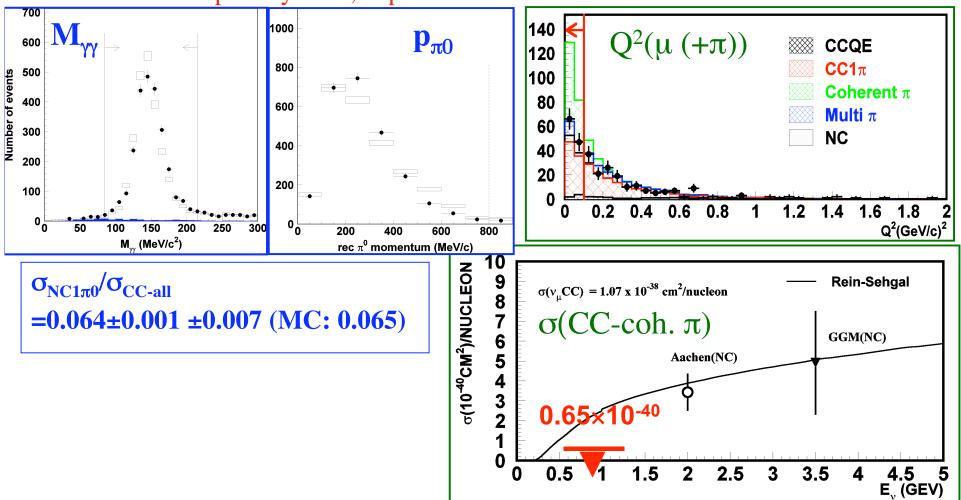


Unexplored Areas of Neutrino Physics

C. 1134. 0256.

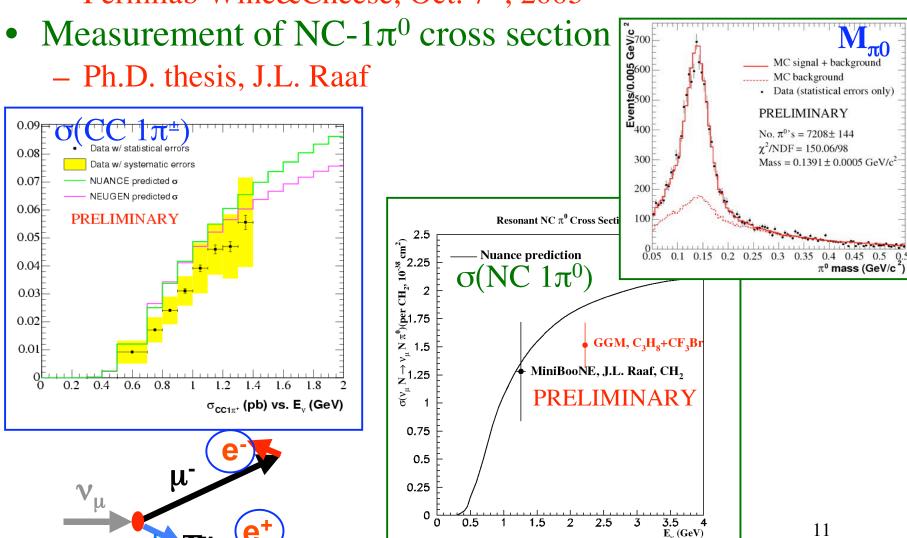
σ_{v} in this E range of interest:

- Data from old experiments (1970~1980)
 - Low statistics
 - Systematic Uncertainties
- Nuclear effects


 (π/p/n absorption/scattering, shadowing, low Q² region)
 - Not well-modeled
- New data from MiniBooNE
 & K2K revealing surprises
- More data at 1GeV with fine grained resolution will advance Neutrino Physics.

Anti-v cross section is in a poor situation.

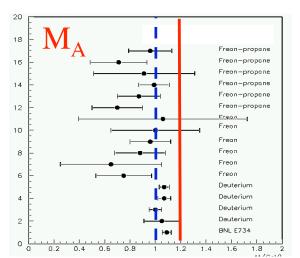
K2K results on the neutrino cross sections.

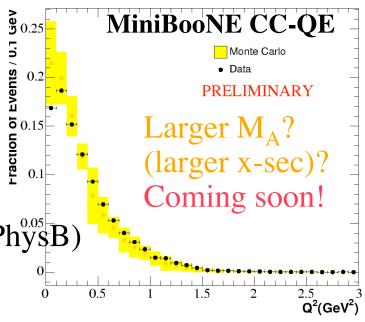

- Measurement of NC- $1\pi^0$ cross section (1KT).
 - PL B619(2005)255-263
- Limit on CC-coherent π cross section (SciBar).

Accepted by PRL, hep-ex/0506008

MiniBooNE results on the neutrino cross sections.

- Measurement of CC- $1\pi^{\pm}$ cross section.
 - Fermilab Wine&Cheese, Oct. 7th, 2005




More results are expected from both K2K and MiniBooNE

- CC-QE
 - Cross Section and Axial Mass (M_A)

 $M_A=1.18\pm0.03\pm0.12$ (K2K-SciFi preliminary)

- CC-1π[±]
 - Cross Section and $M_A^{1\pi}$
- CC- $1\pi^0$
- Beam v_e flux
- NC-coherent π^0
- HARP results
 - w/ K2K and MiniBooNE collaborators
 - Al with 12.9 GeV (accepted by NuclPhysB)
 - Be with 8 GeV (will be soon)

What's missing from K2K and MiniBooNE Cross Section Measurements?

- Good Q² resolution to understand nuclear effects
 - Need true nuclear models in MCs
- Resonant/coherent separation for BG measurements
- Multiparticle final states
- Antineutrino Measurements
- Absolute σ measurements for non-QE channels

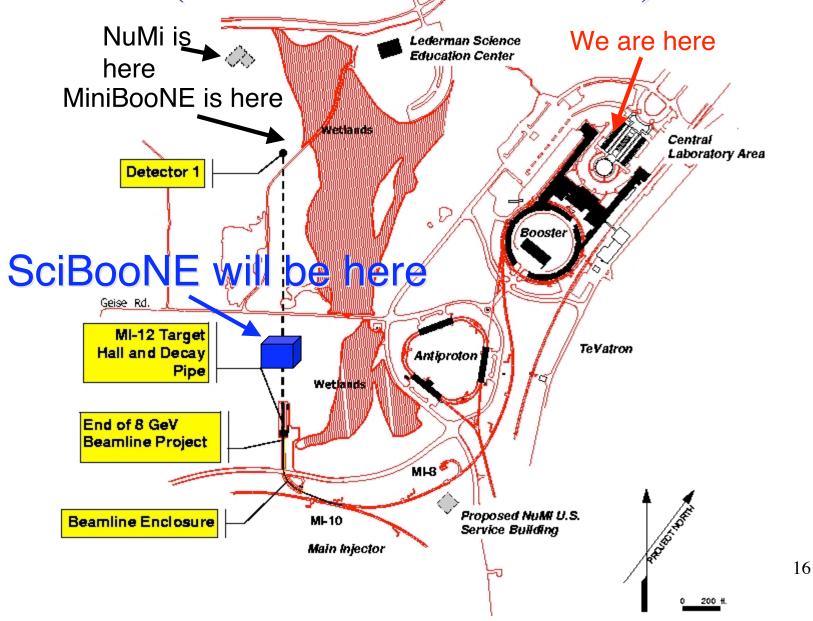
All these needed for next generation oscillation measurements

Needed to tune neutrino cross section Monte Carlos

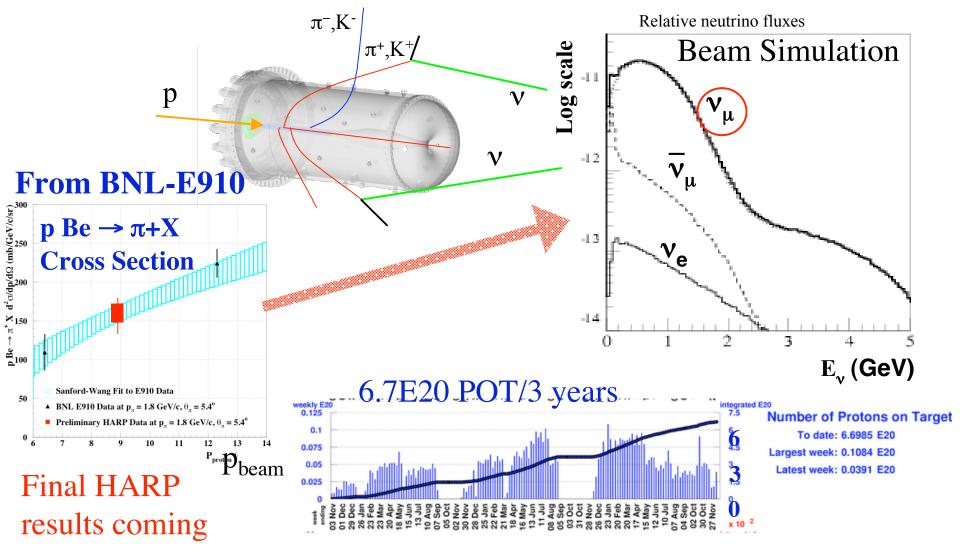
3. SciBooNE Experiment

A fine-segmented tracking detector with an intense low energy neutrino beam.

- SciBar Detector
 - Well-working detector (2003.9- at K2K)
 - Fine granularity $(2.5 \times 1.3 \text{cm}^2)$ and Fully-Active
 - PID capability
- FNAL-BNB
 - An intense and low energy (~1GeV) beam.
 - \leq 1 year data taking is sufficient.
 - Both neutrinos and anti-neutrinos.
 - The beam is well-understood from hadron production experiments (HARP/BNL-E910).

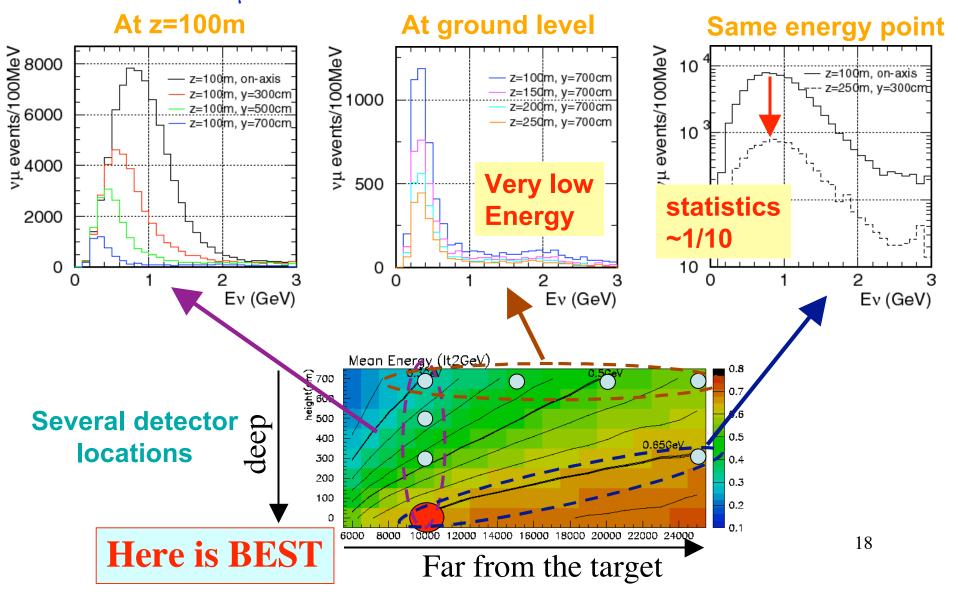

An ideal marriage of the detector and the beam for a precision neutrino interaction experiment.

(A new experimental team from K2K and MiniBooNE)

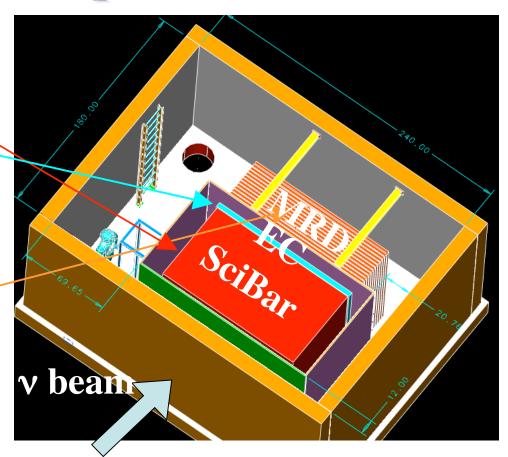

SciBooNE Overview

- Propose 2E20 POT run
 - 0.5E20 POT neutrino mode
 - 1.5E20 POT antineutrino mode
 - Not asking for concurrent running with MiniBooNE
- Propose construction of detector hall
- Director's Review October, 2005
 - Concentrated on physics case
 - Answers to questions from Review will be shown throughout talk

Fermilab Accelerator Complex and BNB (Booster Neutrino Beam)


FNAL BNB (2E20 protons for SciBooNE)

•Directorate recommends planning on 1-2E20 POT/year (Consistent with Proton Plan)

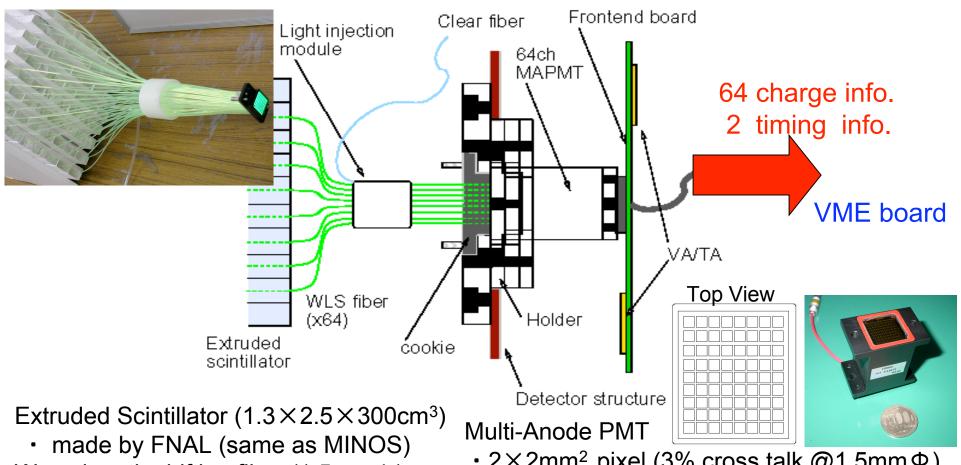

Ideal Detector Location

Expected v_{μ} flux $\times \sigma$ spectra

Detector Components

- SciBar Detector \
 - From KEK, Japan
- Electron Calorimeter
 - From KEK, Japan
 - European collaborators have responsibility.
- Muon Range Detector
 (MRD)
 - Will be built at FNAL from the parts of an old experiment (FNAL-E605).
 - The materials exist (except light guides) and detailed design is underway at FNAL.

New engineering drawings since Review


SciBar Detector

- Extruded scintillators with WLS fiber readout
- The scintillators are the neutrino target
- 2.5 x 1.3 x 300 cm³ cell
- ~15000 channels
- Detect short tracks (>8cm)
- Distinguish a proton from a pion by dE/dx
- Total 15 tons
- → High track finding efficiency (>99%)
- →Clear identification of ν interaction process

Extruded scintillator (15t). Multi-anode PMT (64 ch.) Wave-length SciBar detector shifting fiber

Constructed in summer 2003

SciBar Components

Wave length shifting fiber $(1.5 \text{mm} \, \Phi)$

- Long attenuation length (~350cm)
- → Light Yield: 18.9p.e./cm/MIP

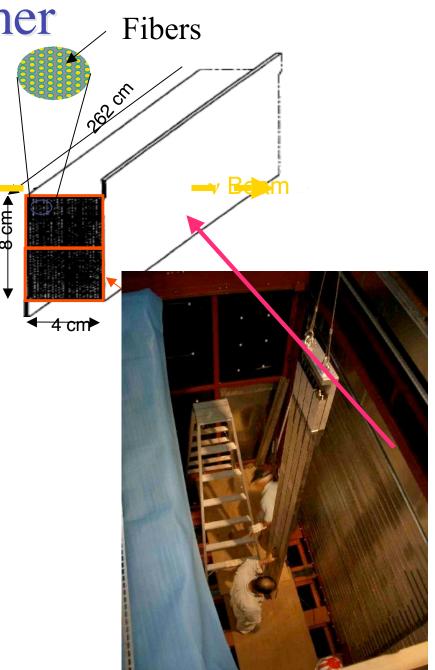
• 2×2 mm² pixel (3% cross talk @1.5mm Φ)

21

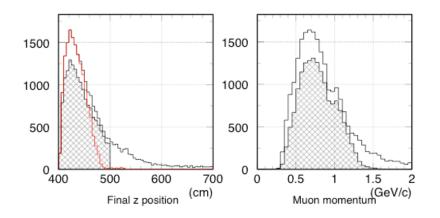
- Gain Uniformity (20% RMS)
- Good linearity (~200p.e. @6×10⁵)

Readout electronics with VA/TA

- ADC for all 14,400 channels
- TDC for 450 sets (32 channels-OR)


Electron Catcher

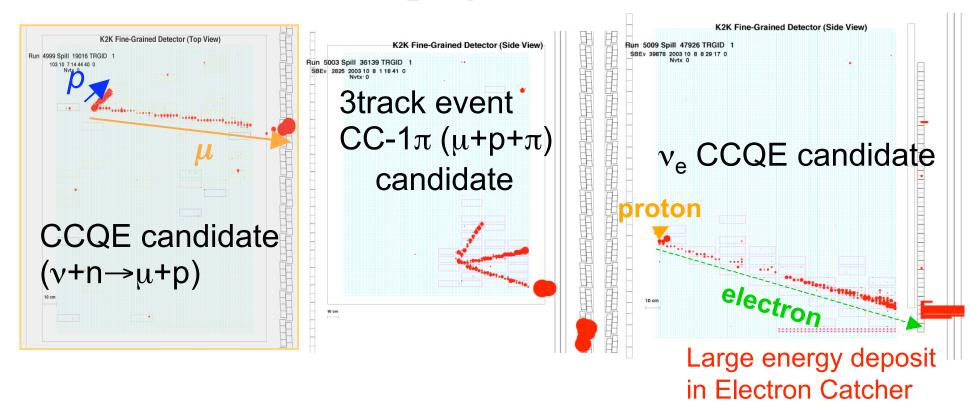
• "spaghetti" calorimeter re-used from CHORUS


- 1mm diameter fibers in the grooves of lead foils
- 4x4cm² cell read out from both ends
- 2 planes (11X₀)
 Horizontal: 30 modules

Vertical: 32 modules

- Expected resolution 14%√E
- Linearity: better than 10%

PMTs Scintillator



MRD

- Major Components
 - Have at Fermilab already:
 - Iron plates
 - 1", 2" plates available
 - Scintillators
 - Very good condition
 - PMTs
 - Electronics
 - Cables
 - Power supplies
 - Need to be fabricated
 - Light guides
- Improved design and inventory since Review
 - Thank you Mechanical Dept!

MRD Acceptance: Final z position and momentum of stopping us

Event Display (K2K- Data)

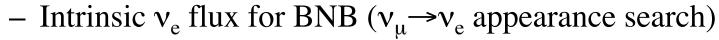
- The neutrino events are well observed with fine resolution
 - Good final state particle ID

4. Physics of SciBooNE

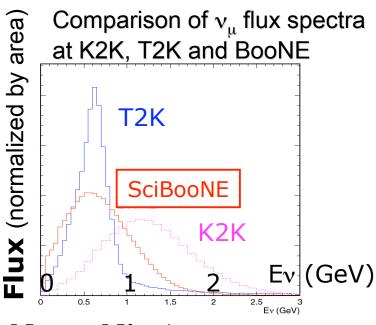
Neutrino run $(0.5 \times 10^{20} \text{ POT})$

```
# of interactions in 10 ton Fiducial Volume v_{\mu} \sim 78,000 v_{e} \sim 700
```

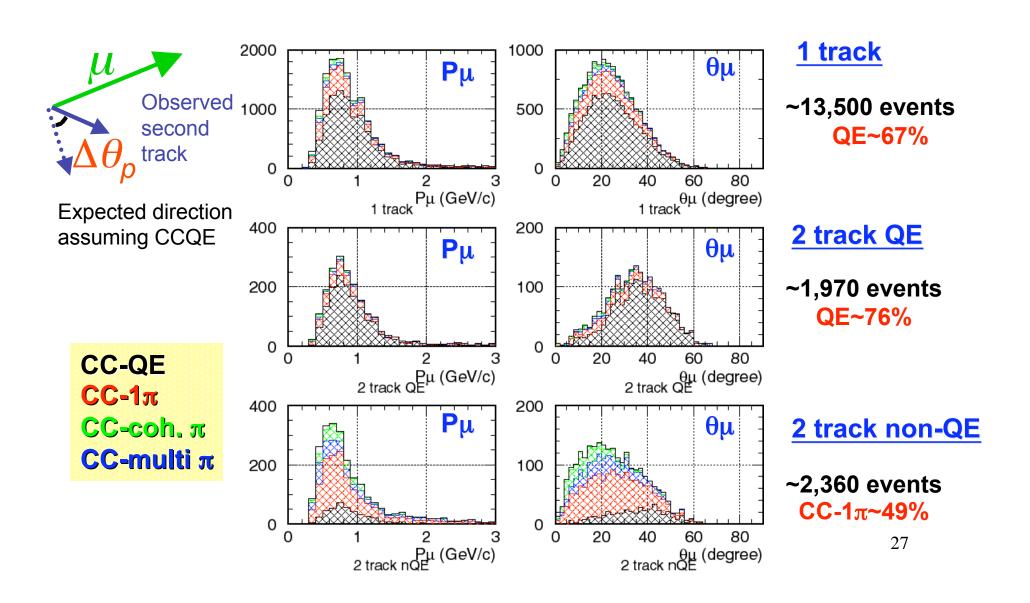
cf. K2K-SciBar (0.2×10 20 POT) : ~25,000 v_{μ}


The following studies use K2K's well developed MC and analysis tools, and MiniBooNE's well developed beam MC.

Neutrino Run

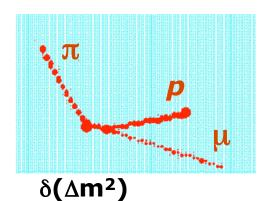

Measurements

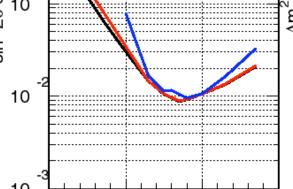
- CC- 1π cross section
- CCQE σ ,M_A measurement
- NC π^0 measurement
- Search for CC coherent π
- Search for NC coherent π^0

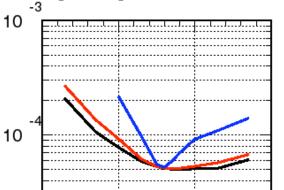


- Unoscillated $\Phi_{\nu} \times \sigma$ for BNB $(\nu_{\mu} \rightarrow \nu_{\mu})$ disappearance search)

Study v interactions to improve MC modeling of low E vs for precision physics 26


CC Event Selection with MRD matching


$CC-1\pi^+$ measurement


 $\delta(\sin^2 2\theta)$

- Non-QE events: dominant background for v_{ii} disappearance
 - At BNB energies, non-QE BG dominated by $CC1\pi^+$
 - T2K needs uncertainty of nonQE/QE to ~5%

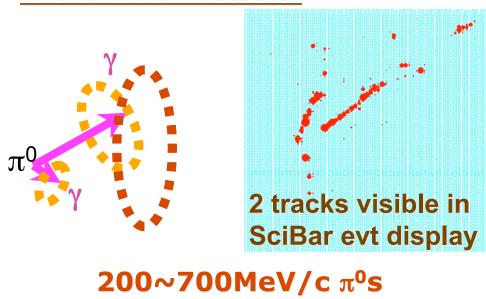
 v_{μ} disappearance - stat. only
- $\delta(nQE/QE) = 5\%$ - $\delta(nQE/QE) = 20^{07}$ measurement error (90%CL)

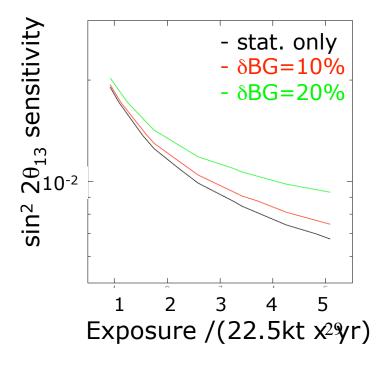
 $\Delta m^2 (x10^{-3} \text{ eV}^2)$

CC- $1\pi^+$ signature: 2 MIP-like tracks

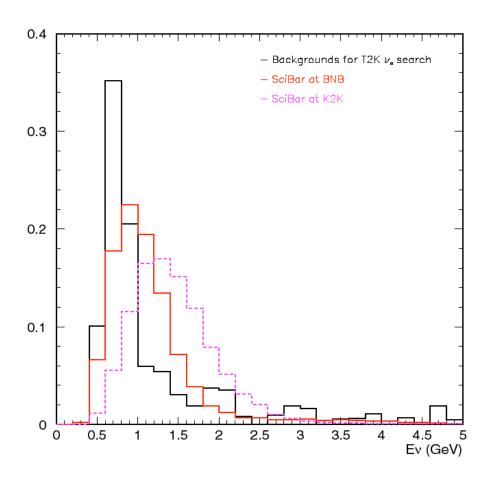
Vertex activity cuts: separate $v+p \rightarrow \mu^- p \pi^+$ from $v+n\rightarrow \mu^+n\pi^+$

Statistics and systematics Sufficient for ~5% measurement

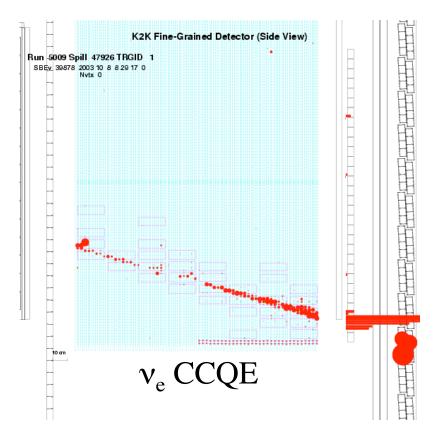

 $3 \Delta m^2 (x10^{-3} \text{ eV}^2)$

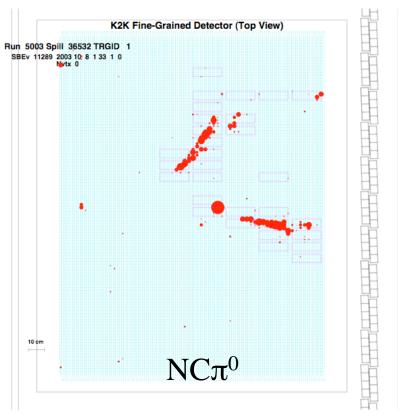

10

$NC-1\pi^0$ measurement


- Dominant background to v_e appearance in any experiment
 - Overlapping rings, or back-to-back decay
 - T2K needs NC1 π^0 cross section to be known to 10% level

2-ring merged to 1-ring in Cherenkov detector


NC- $1\pi^0$ measurement (cont'd)



SciBooNE expects to make a 10% measurement

Measurement at energy that is crucial for T2K NC1 π ⁰ BGs

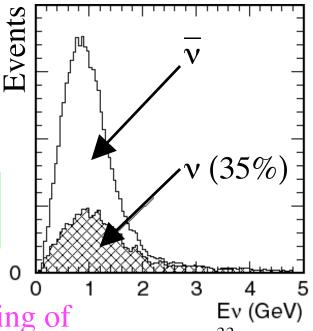
BNB Intrinsic v_e Measurement

- Electron catcher provides good electromagnetic ID and energy resolution
 - Can use dE/dx in SciBar as well
- Expect to directly measure v_e flux to 10-20% in v mode
 - Assuming current efficiency/purity

Anti-neutrino run (1.5×10²⁰ POT)

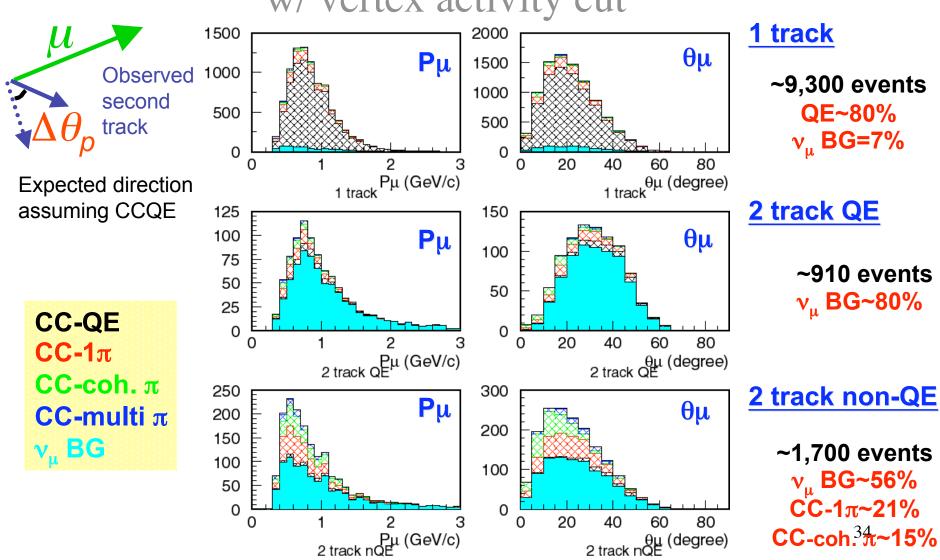
of interactions in FV $\overline{\nu}_{\mu} \sim 40,000$ $\nu_{\mu} \sim 22,000$

cf. K2K-SciBar No data!


Again, well-developed analysis and MC software are used for these studies, and MiniBooNE's well-developed neutrino beam MC.

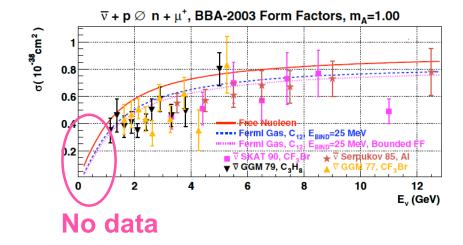
• \overline{v} Measurements

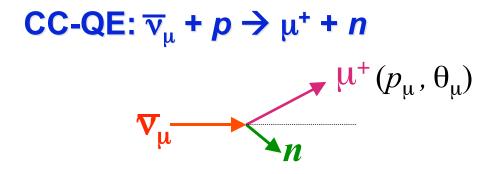
- CCQE measurement.
 - Negligible BG from ν.
 - $\bullet\,$ Energy Dependence of σ and M_A
- CC- 1π cross section with M_A .
- NC π^0 measurement
 - Also $v+p \rightarrow v+p+\pi^0$ exclusive final-state search
- Search for CC coherent π
- Search for NC coherent π^0
- Search for radiative Delta decay $(\nu+N\rightarrow \mu+N'+\gamma)$
- − Hyperon production in anti-v mode
- Energy dependence of ν contamination of BNB anti-ν mode.


Reversible current horn

Study v interactions to improve MC modeling of low E vs for precision physics

Identifying CC Events (w/MRD)

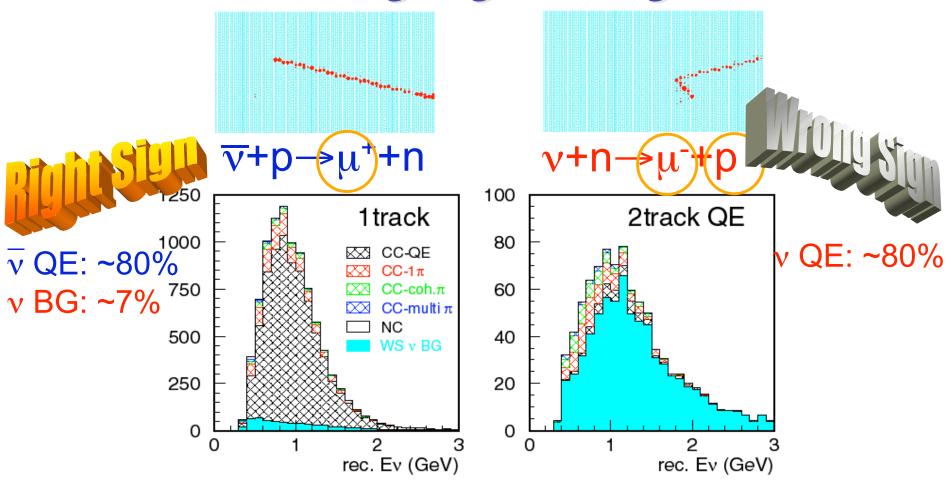

w/ vertex activity cut



Antineutrino CCQE measurement

Physics motivation

- Important for T2K phase-II
 - CP violation search
- Free proton scattering: check of nuclear model



- Detected as a 1-track event in SciBar
- Excellent v energy,
 Q² resolution

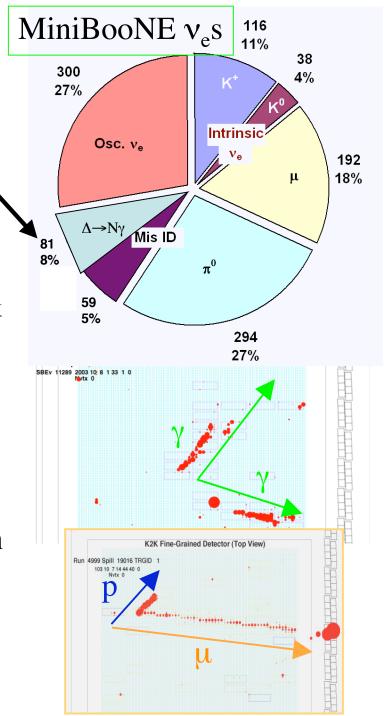
• Expect ~9,000 CCQE events after cuts, 80% purity

BNB Wrong Sign Backgrounds

- MB: ~15% uncertainty on WS BG in 4 bins (0-1.5 GeV)
- SB: ~7.5% stat. err. in 2 track sample in 4 bins (0-1.5 GeV)

Radiative Δ Decay

• $\Delta \rightarrow N\gamma$ is a background for $\overline{\nu}_e$, ν_e appearance (NOvA too!)


- BR: 15% uncertainty

- Never measured in ν production

• Event signature

NC: recoil proton and detached photon track

- CC: muon and recoil proton with shared vertex and photon with detached vertex
- Each case: photon and proton tracks should be consistent with decay of Δ mass particle
- π^0 s provide calibration sample for photon tracks
- Expect \sim 45 events after cuts in total run (ν and ν mode)
- Would be first observation of neutrino induced Δ radiative decay
 - Very powerful detector!

• Anti-ν run

No Measurements Currently Exist

- CCQE measurement.
 - Negligible BG from ν.
 - \bullet Energy Dependence of σ and M_A
- CC- 1π cross section with M_A .
 - NC π^0 measurement
 - Also $\overline{v}+p \rightarrow \overline{v}+p+\pi^0$ exclusive final-state search
- Search for CC coherent π
- Search for NC coherent π^0
- Search for radiative Delta decay $(\overline{\nu}+N\rightarrow \mu (\overline{\nu})+N'+\gamma)$
- Hyperon production in anti-ν mode
- v contamination for BNB anti-v measurements.

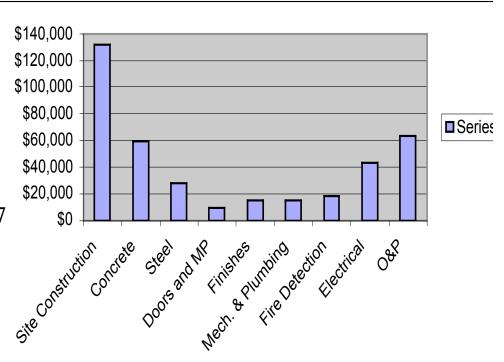
MiniBooNE will run in $\overline{\nu}$ mode in 2006

SciBooNE's final state resolution capability enhances σ physics reach

5. Logistics

Schedule

- Disassemble detector: Jan 2006
- Ship detector: Feb/Mar, 2006 (depends on money)
- Civil construction: Jan-September, 2006
 - Schedule from FESS report
 - Bid: Jan-May, 2006
 - Construction June-September, 2006
- Reassemble detector: March-June, 2006
- Installation : September 2006
- Commissioning: September/October, 2006
- Beam data: October, 2006

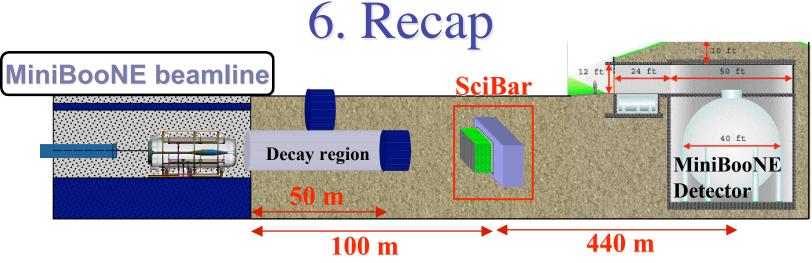

All Done Before

Need prompt approval to enact aggressive schedule

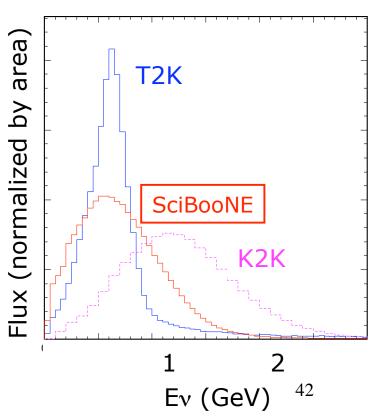
Costs

- Civil Construction
 - \$648,576
 - "bottoms up" estimate completed.
 - Anticipated Contract Price \$381,417
 - Contingency = 20%
- PPD Impact
 - M&S
 - \$60,200 (all departments)
 - \$20-50,000 for optical fibers/cookies (light guides) university groups?
 - Personnel: ~3 FTE (normalized to one year)
- AD Impact power bill
 - \$220,000 incremental cost increase (Booster for 8 GeV line)
 - \$67,000 power downstream of Booster (8 GeV line/target)
- CD Impact
 - PREP (electronics pool) equipment
 - Modest computing resources needed

Thanks to Steve Dixon And Tom Lackowski, FESS



Cost Considerations


- Beam is already built and commissioned!
- Cost of SciBar ~ \$3M
- Cost of Electron Catcher ~ \$1M
- Cost of shipping ~ \$50k
- University groups will contribute significant funds and personnel
- Cost of civil construction \$650k
- Cost of running BNB for 1 year ~\$300k
- Cost of FNAL M&S <\$100k

Small additional investment for a lot of physics output!

Free to FNAL

- Combine well developed detector with well understood running beam
 - Short timescales and modest cost
- Precise knowledge of os necessary for T2K and other experiments
 - Non quasi-elastic ν interactions
- MiniBooNE near detector.
 - Confirmation, redundancy for BNB vs
- Antineutrinos
 - Currently unexplored physics territory.

Conclusions

- SciBar is a working detector with excellent capabilities
- The BNB is a well-understood running ν beam
- Can contribute to near-term neutrino program at FNAL
 - Complementary to MINERvA
 - Bring more neutrino physicists to FNAL
- Many recent surprises in ν interactions at $\sim 1 \text{ GeV}$
 - Nuclear targets have unpredicted effects on neutrino event kinematics
 - Cross sections (and therefore event rates) differ from predictions
 - Different rates of signal and BG events
 - Flavor BGs and v-interaction BGs
- What other surprises await?
- We ask the PAC to approve our proposal to build a detector enclosure, and our 2E20 POT run
 - Prompt approval needed to secure funding for university groups and U.S./Japan Research Fund

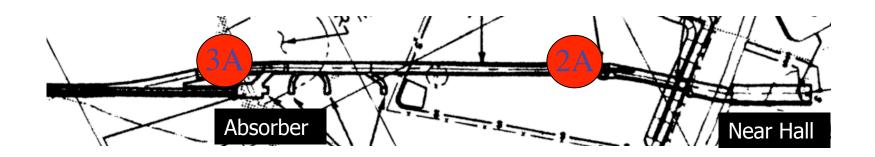
Backup

Thoughts on ν_{μ} Signal and BG σs

- Oscillation expts use CCQE events on nuclear targets for signal
 - Nuclear targeta provide more interactions, better statistics
 - Simple kinematics \Rightarrow good energy reconstruction
- ν_e Appearance
 - Need to distinguish e from μ in detector
 - BG = processes that fake v_e oscillation signals (flavor BG)
 - Intrinsic ve
 - NCπ0
 - NC∆ decay
 - Affect counting experiment
- v_{μ} Disappearance
 - Need to distinguish CCQE from other CC processes
 - BG = processes that fake QE signal (v-interaction BG)
 - CC1 π +
 - Affect energy fitting experiment (poor energy resolution)
- Note: CCQE BG processes also affect ve searches!

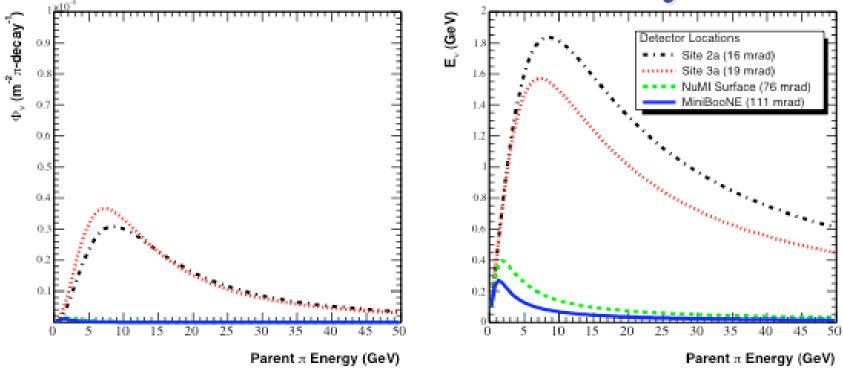
Past Cross Section Uncertainty Table

Type	Cross Sec.	<i>E<1 GeV</i>	E>1 GeV	Role
$oldsymbol{ u}_{\mu}$	CCQE	>15-20%	15-20%	$\nu_{\mu}(\nu_{\rm e})$ signal
$ u_{\mu} $	$CC1\pi^+(res)$	~25%	~25%	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$oldsymbol{ u}_{\mu}$	CC1π ⁺ (coh)	100%	~30%	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$oldsymbol{ u}_{\mu}$	$NC1\pi^0$ (res)	~30%	~30%	ν _e BG(#,E)
$oldsymbol{ u}_{\mu}$	$NC1\pi^0(coh)$	No data!	~30%	$v_{\rm e}$ BG(#,E)
$egin{array}{c} oldsymbol{ u}_{\mu} \ \hline oldsymbol{ u}_{\mu} \ \hline oldsymbol{ u}_{\mu} \end{array}$	CCQE	No data!	15-20%	$\overline{\mathbf{v}}_{\mu}(\overline{\mathbf{v}}_{\mathrm{e}})$ signal
$\overline{\overline{m{ u}}}_{\mu}$	CC1π ⁻ (res)	No data!	~25-30%	$\overline{\nu}_{\mu}(\overline{\nu}_{e}) BG(E)$
$\overline{\overline{oldsymbol{ u}}}_{\mu}$	CC1π ⁻ (coh)	No data!	No data!	$\overline{\nu}_{\mu}(\overline{\nu}_{e}) BG(E)$
$egin{array}{c} \overline{\overline{\mathbf{v}}}_{\mu} \\ \overline{\overline{\mathbf{v}}}_{\mu} \\ \hline \overline{\mathbf{v}}_{\mu} \end{array}$	$NC1\pi^0$ (res)	No data!	25%	$\overline{\nu}_{\rm e}$ BG (#,E)
$\overline{\overline{ u}}_{\mu}$	$NC1\pi^0(coh)$	No data!	30%	$\overline{\nu}_{e} BG (\#_{46}E)$


Current Cross Section Uncertainty Table

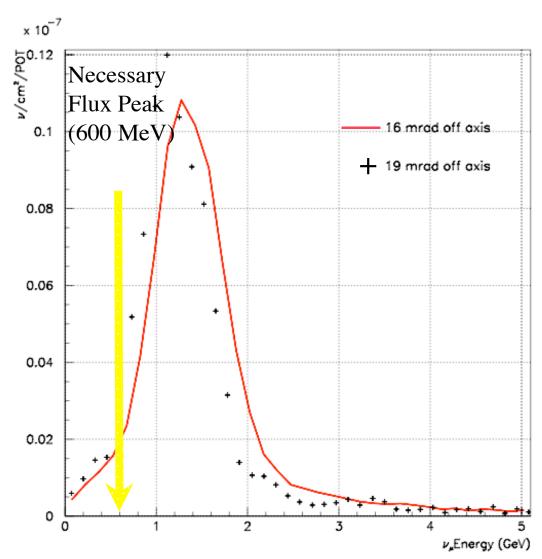
Type	Cross Sec.	E<1 GeV	E>1 GeV	Role
$oldsymbol{ u}_{\mu}$	CCQE	~10%(MB)	~15%(K2K)	$v_{\mu}(v_{\rm e})$ signal
$ u_{\mu} $	CC1π ⁺ (res)	~15%(MB)	~25%	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$oldsymbol{ u}_{\mu}$	CC1π ⁺ (coh)	~50%(MB)	~15%(K2K	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$oldsymbol{ u}_{\mu}$	$NC1\pi^0$ (res)	~20%(MB)	~20%(K2K)	ν _e BG(#,E)
$oldsymbol{ u}_{\mu}$	$NC1\pi^0(coh)$	~50%(MB)	~30%	ν _e BG(#,E)
$egin{array}{c} oldsymbol{ u}_{\mu} \ oldsymbol{ u}_{\mu} \ oldsymbol{ u}_{\mu} \ oldsymbol{ u}_{\mu} \end{array}$	CCQE	No data!	15-20%	$\overline{\nu}_{\mu}(\overline{\nu}_{e})$ signal
$\overline{\overline{m{ u}}}_{\mu}$	CC1π ⁻ (res)	No data!	~25-30%	$\overline{\nu}_{\mu}(\overline{\nu}_{e}) BG(E)$
$\overline{\overline{m{ u}}}_{\mu}$	CC1π ⁻ (coh)	No data!	No data!	$\overline{\nu}_{\mu}(\overline{\nu}_{e}) BG(E)$
$\overline{\overline{m{ u}}}_{\mu}$	$NC1\pi^0(res)$	No data!	25%	<u>ν</u> _e BG (#,E)
$\overline{\overline{ u}}_{\mu}$	$NC1\pi^0(coh)$	No data!	30%	$\overline{\nu}_{e}$ BG (#,E)

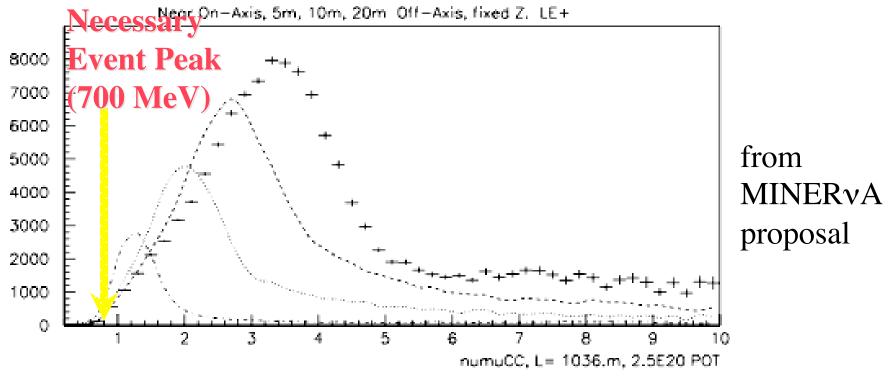
Future Cross Section Uncertainty Table


Type	Cross Sec.	E<1 GeV	E>1 GeV	Role
$ u_{\mu} $	CCQE	~5%(SciBooNE)	5% (MINERVA)	$\nu_{\mu}(\nu_{\rm e})$ signal
\mathbf{v}_{μ}	$CC1\pi^+(res)$	~5%	5%	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$ u_{\mu} $	$CC1\pi^+(coh)$	~10%	5%	$\nu_{\mu}(\nu_{e}) \ BG(E)$
$ u_{\mu} $	$NC1\pi^0$ (res)	~10%	10%	$v_{\rm e}$ BG(#,E)
$ u_{\mu} $	$NC1\pi^0(coh)$	~15%	20%	ν _e BG(#,E)
$\overline{\overline{\nu}}_{\mu}$	CCQE	~10%	?	$\overline{v}_{\mu}(\overline{v}_{e})$ signal
$\overline{\overline{ u}}_{\mu}$	CC1π ⁻ (res)	~10%	?	$\overline{\overline{\nu}}_{\mu}(\overline{\overline{\nu}}_{e}) BG(E)$
$\overline{\overline{ u}}_{\mu}$	CC1π ⁻ (coh)	~10%	?	$\overline{\overline{\nu}}_{\mu}(\overline{\overline{\nu}}_{e}) BG(E)$
$\overline{\overline{\nu}}_{\mu}$	$NC1\pi^0$ (res)	~15%	?	<u>v</u> _e BG (#,E)
$\overline{\overline{ u}}_{\mu}$	$NC1\pi^0(coh)$	~20%	?	$\overline{\nu}_{e}$ BG (#,E)

NuMI Off-Axis Locations

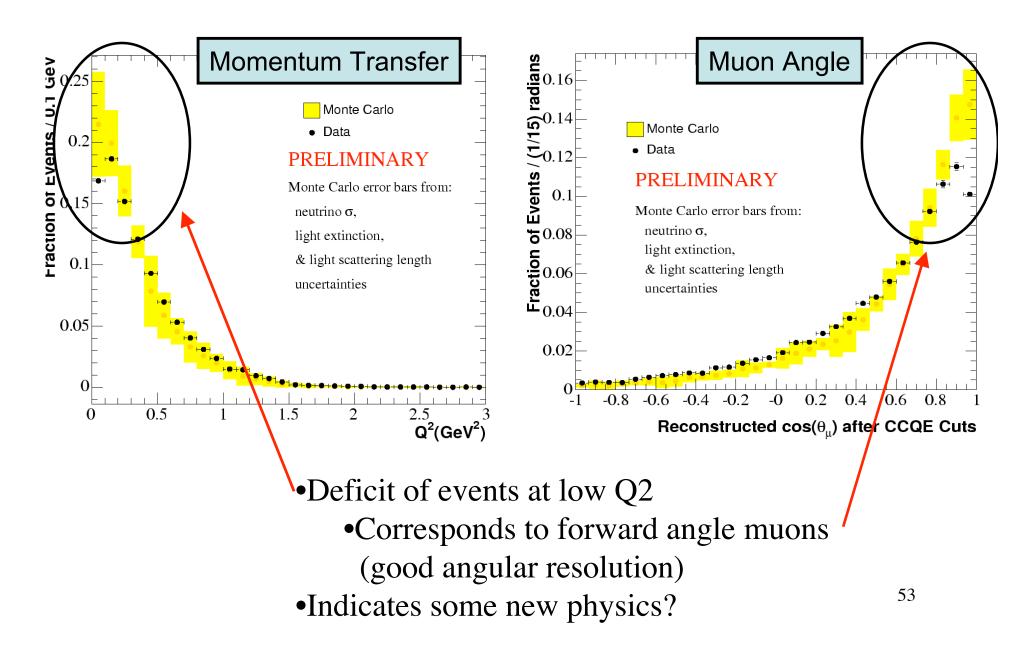
- Several locations available for (small) detector installation in NuMI off axis tunnel
- We studied fluxes at two such locations:
 - 2A 16 mrad off axis
 - 3A 19 mrad off-axis
- Thanks:
 - Mark Messier for locations in beam coordinate system
 - Debbie Harris, from whose slides we got this figure


NuMI Off-Axis Study

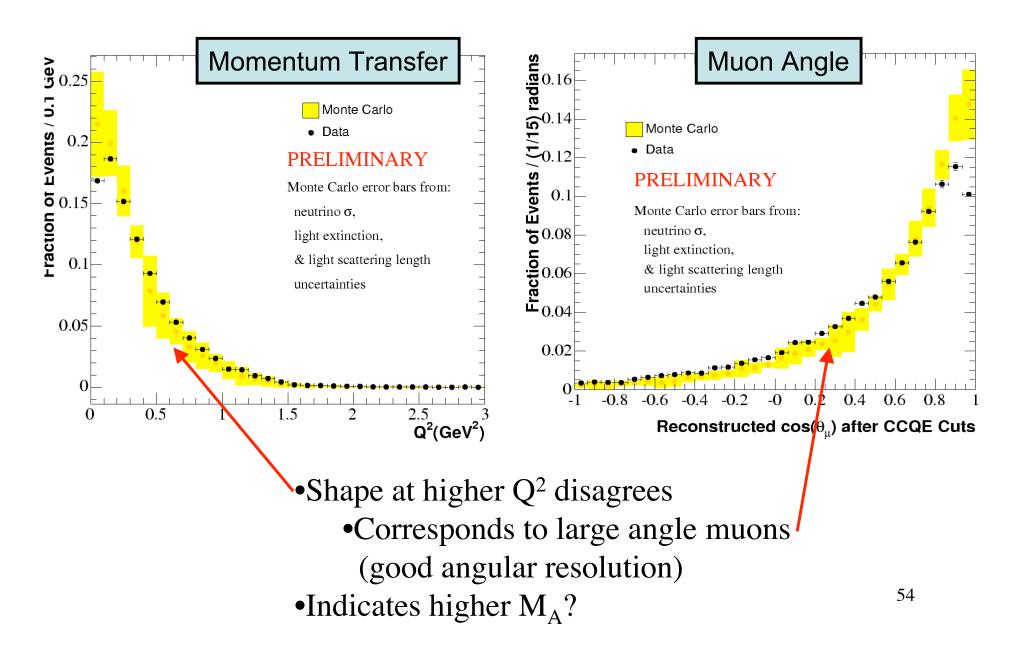

- Use "Off-Axis Formula" for π decay in flight
- $E_{\pi}^{\text{peak}} = \sim 8.8 \text{ GeV (16mrad)}, \sim 7.5 \text{ GeV (19 mrad)}$ $E_{\nu}^{\text{peak}} = \sim 1.85 \text{ GeV (16mrad)}, \sim 1.55 \text{ GeV (19mrad)}$
- Compare to MiniBooNE and MINOS surface hall

NuMI Off-Axis Fluxes

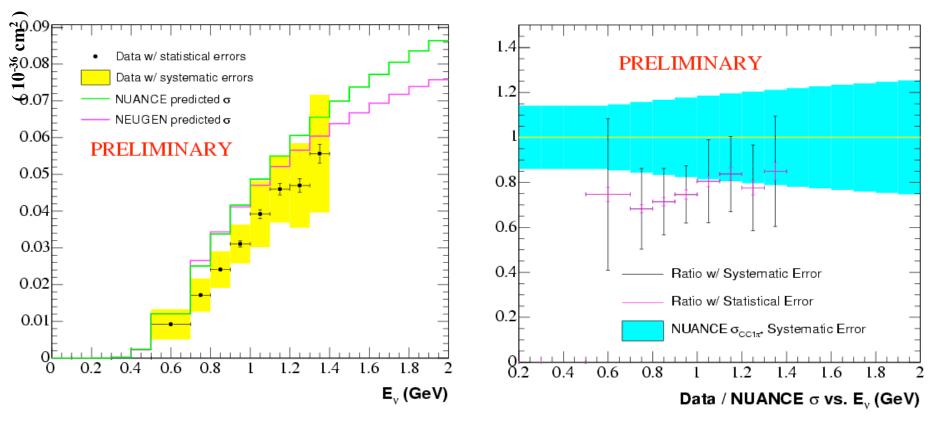
- gnumi neutrino beam Monte Carlo
- Flux prediction for two off-axis locations
 - Pion decays in flight
- Unsuitable for our physics goals
 - Peak energy too high
 - Significant HE tail makes formidabel BGs for NC events



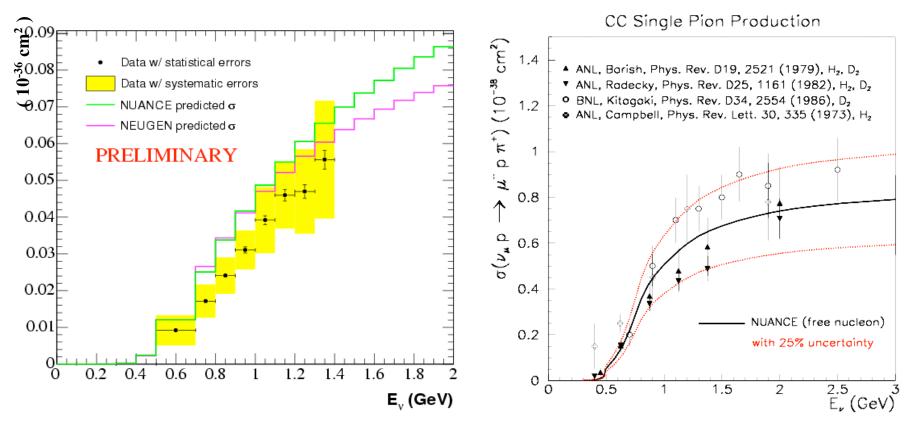
NuMI Off-Axis Events



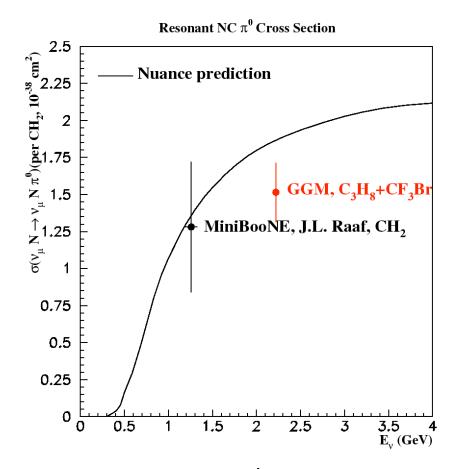
- Event Distributions at various off axis locations in NuMI
 - On-axis, 5 mrad, 10 mrad, 20 mrad
- Confirms previous plot: NuMI off-axis locations are not suited to SciBooNE physics goals
- Availability of SciBar is dependent on utility for T2K

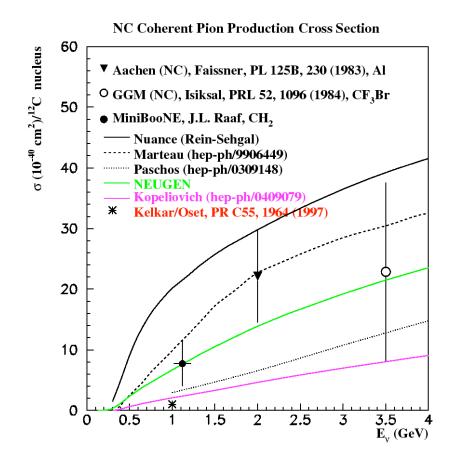

MiniBooNE CCQE σ on CH₂

MiniBooNE CCQE σ on CH₂



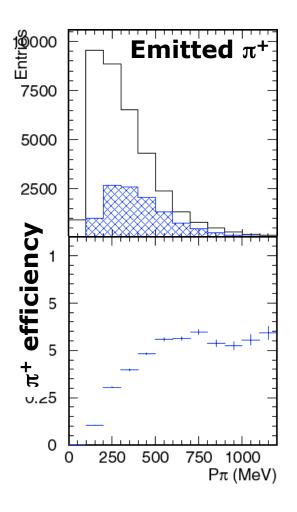
MiniBooNE CC1 π ⁺ σ on CH₂


- systematic errors due to ν cross sections (~15%),
- photon atten. and scatt. lengths in oil ($\sim 20\%$),
- energy scale (~10%)
- MiniBooNE result lower than NUANCE prediction
 - More consistent with ANL result than BNL result


MiniBooNE CC1 π ⁺ σ on CH₂

- systematic errors due to ν cross sections (~15%),
- photon atten. and scatt. lengths in oil (\sim 20%),
- energy scale (~10%)
- MiniBooNE result lower than Monte Carlo predictions
 - More consistent with ANL result than BNL result

MiniBooNE NC1 π^0 σ on CH₂

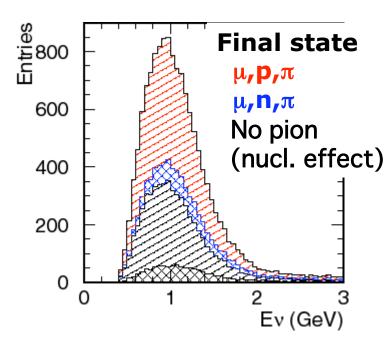


- systematic errors:
 - cross section uncertainties (~15%, 20%)
 - energy scale (5%)
- MiniBooNE coherent fraction well below Rein-Sehgal and Marteau

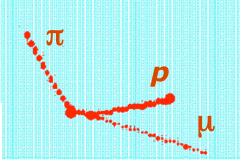
SciBooNE CC- $1\pi^+$ measurement

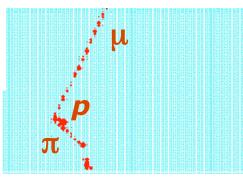
π^+ detection efficiency as a function of $P\pi^+$

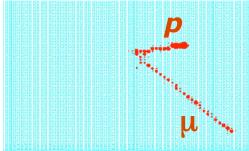
CC-1π⁺ signature:2-track, both are MIP-like

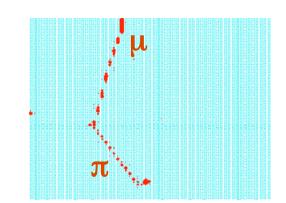

Selection criteria	#(CC-1π ⁺)	Purity	Efficiency
	[events]		
Generated in FV	13,892		100%
CC inclusive sample (SciBar+EC+MRD)	8,977	24.1%	64.6%
# of tracks =2	2,705	32.6%	19.5%
2 nd track = MIP-like	1,355	46.8%	9.8%

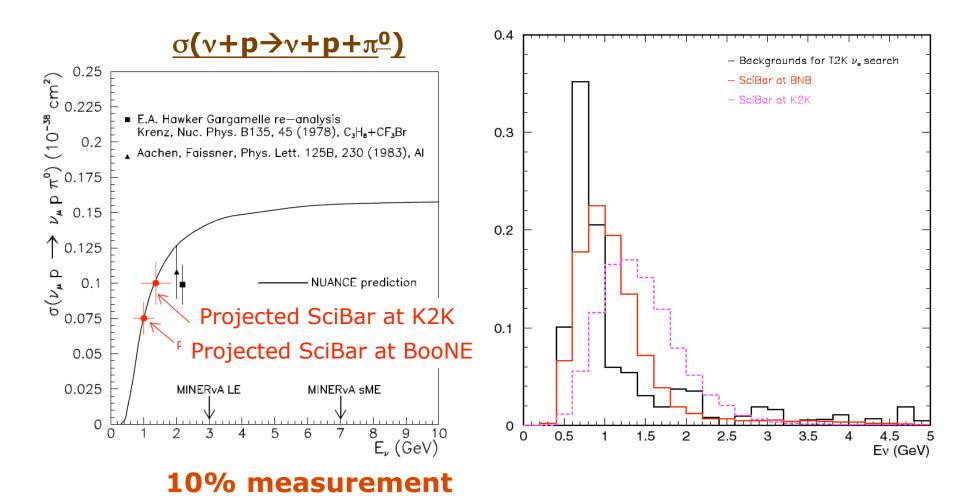
Additional vertex activity can separate $v+p\rightarrow \mu+p+\pi^+$ from $v+n\rightarrow \mu+n+\pi^+$


Statistics will allow a 5% measurement


SciBooNE CC- $1\pi^+$ measurement

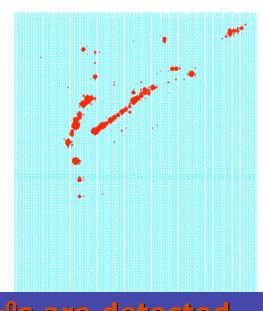



Clear event-by-event final-state tagging!

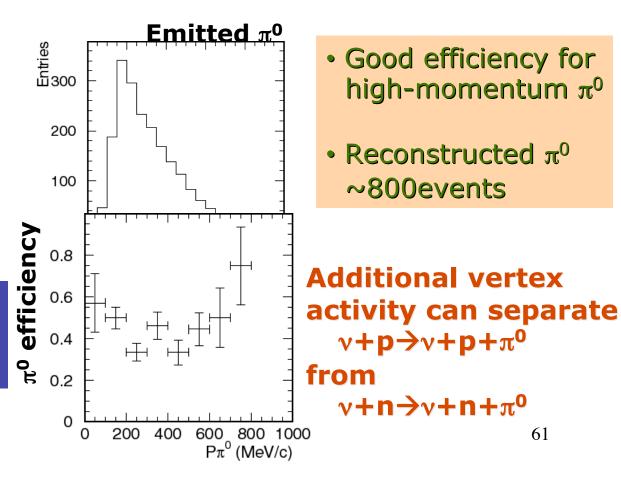


SciBar has the ability to separate the final state

Sensitive to the nuclear effect

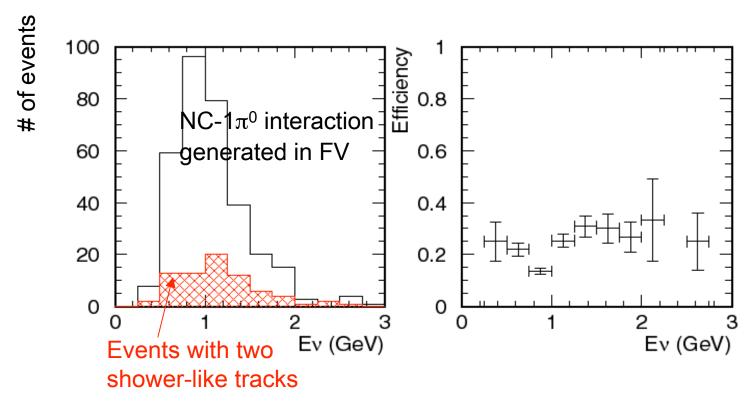

SciBooNE NC- $1\pi^0$ measurement

Map out energy dependence at point where cross section turns over, crucial for T2K NC1 π ⁰ BGs


SciBooNE NC-1π⁰ measurement

NC-1π⁰ event display

π⁰s are detected as two shower-like tracks in SciBar


π^0 detection efficiency as a function of $P\pi^0$

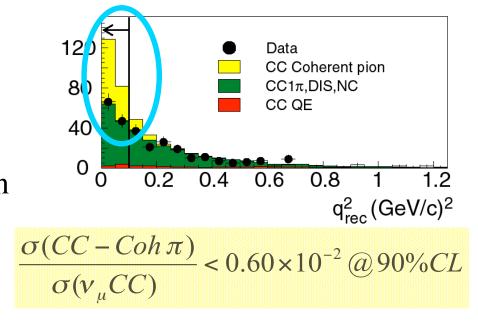
61

SciBooNE NC-1π⁰ efficiency as a function of neutrino energy

Estimated by eye-scan of event display

NOTE: black histogram includes the events that π^0 is not emitted due to nuclear effect

Why do the neutrino cross section help future experiments, like T2K?

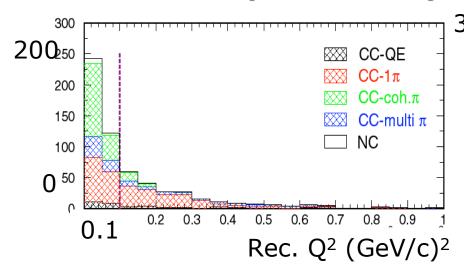

• Observables \propto Flux(Φ) \times σ (E_{ν}) \times efficiency (ϵ)

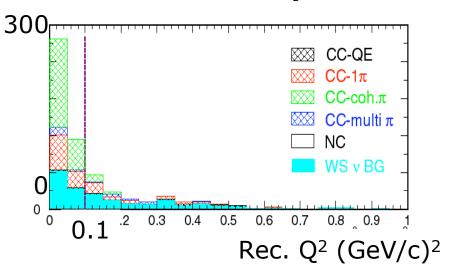
	Ф	$\sigma(E_{\nu})$	3	E _v (GeV)
K2K-ND	_(HARP)	Some results	Well- understood	1.3
MiniBooNE	_(HARP)	Under Progress	Under calibration & tuning	0.7
SciBar@BN B	_(HARP)	Willi	Well- understood	0.7
T2K-ND280			need some time	0.7
MINERvA	_(MIPP)		??	2~5? 63

CC-coherent π measurement

• CC-coherent $\pi: v+A \rightarrow \mu+A+\pi$

- Physics motivation
 - SciBar observed no
 CC-coherent π production
 in the K2K beam
 (hep-ex/0506008)

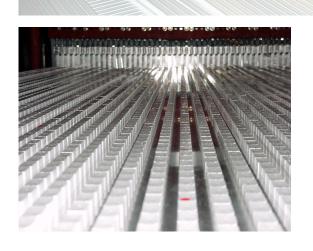

It will be a good check by using both neutrino and antineutrino beam


CC-coherent π measurement (cont'd)

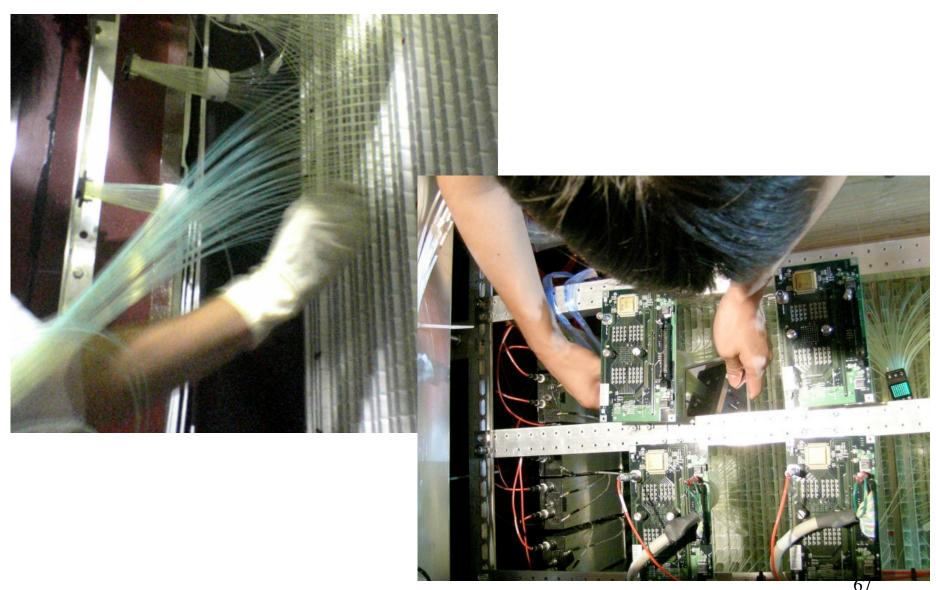
Rec. Q² distribution of final sample

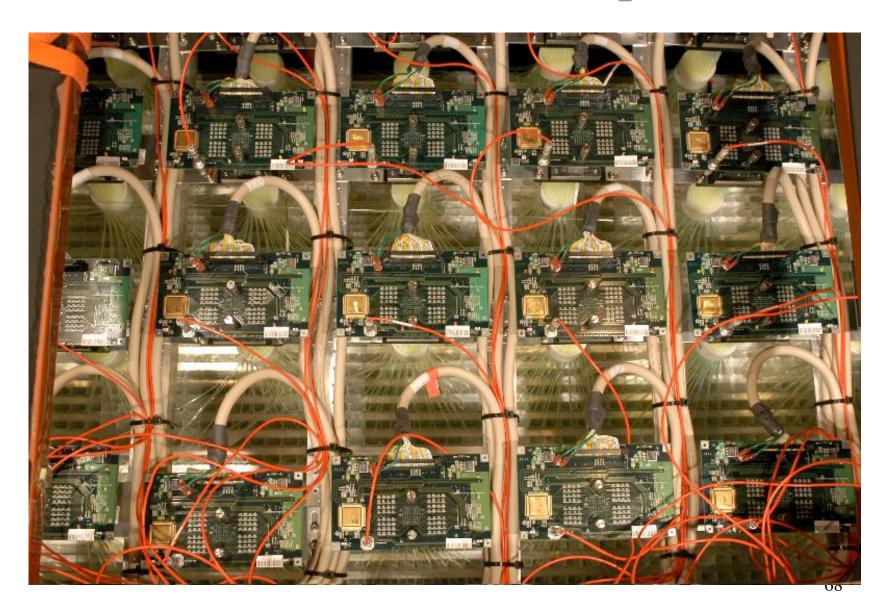
Neutrino Run(0.5x10²⁰POT)

Anti-neutrino Run(1.5x10²⁰POT)

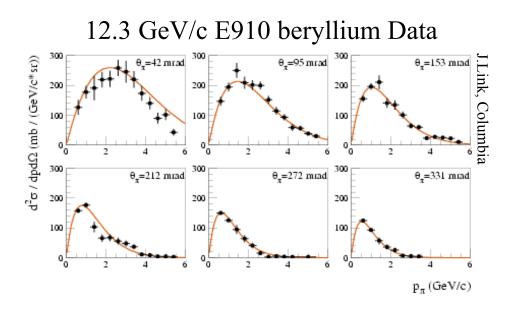

#(coherent π)~160events Efficiency = 0.11 Purity = 0.44 #(coherent π)~240events Efficiency = 0.11 Purity = 0.49

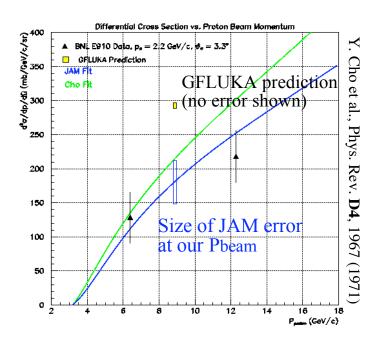
We can measure in both neutrino and anti-neutrino beam


SciBar Installation (1)



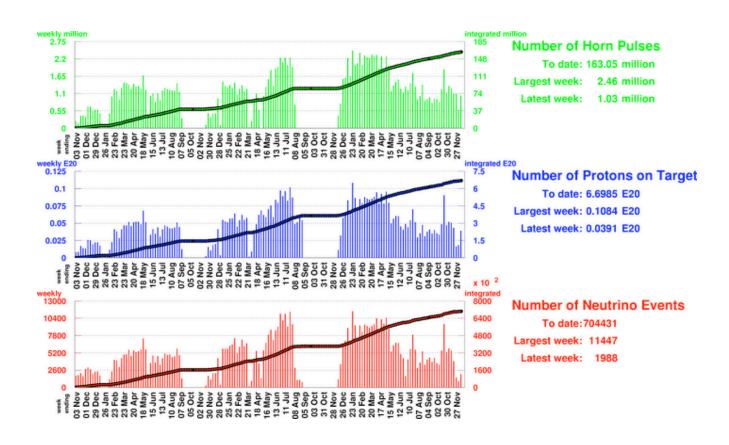
SciBar Installation (2)

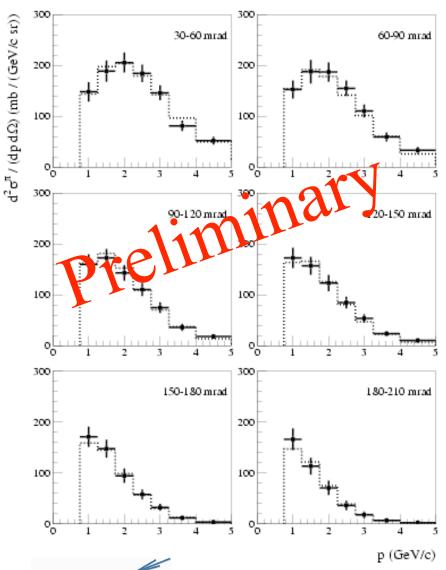

SciBar Installation – complete!



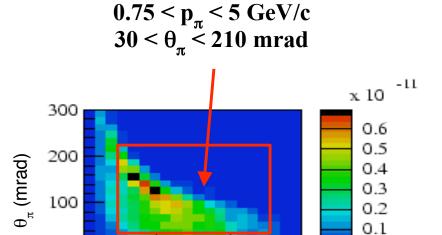
Calculating the BNB Φ_{ν}

primary p Be $\rightarrow \pi^+ X$ interactions:


• Sanford-Wang parameterization fit to E910 hadron production data, 6 and 12 GeV


- Parametrization
 - allows extrapolation from various data sets (different p_{beam})
 - allows interpolation of cross section tables between existing experimental data
 - E910 publication in preparation
 - HARP will nail down production at 8 GeV with small errors (use E910 fit as cross check)

BNB Proton Delivery



- Directorate recommends planning on 1-2E20 POT
- We assume 2E20 POT in a one year run
 - 0.5E20 POT in ν mode, 1.5E20 in $\overline{\nu}$ mode
 - This is consistent with FNAL Proton Plan

HARP Beryllium Thin Target Results

Preliminary double differential π^+ production cross sections from the Be 5% target are available

Momentum and Angular distribution of pions decaying to neutrinos that pass through the MB detector.

 p_{π} (GeV/c)

0

2

Error Evaluation

For HARP p A1 $\rightarrow \pi^+ X$

•Thorough systematics error evaluation performed, to quantify errors on both:

• $d^2 \sigma^{\pi} / (dpd\Omega) (p, \theta)$

Typical error: 8.7%

• $\sigma^{\pi}(0.75$

Error on total cross-section: 4.7%

Error Source	\$ 70%	S. 70%
	Odiff (70)	δ _{int} (%)
Overall normalization	4.0	4.0
Momentum scale	3.6	0.3
Al target statistics	3.2	0.6
Acceptance correction	2.6	0.7
(π, p) PID	2.5	0.5
Empty target statistics	2.2	0.4
Electron PID	2.1	0.5
Momentum resolution (smearing)	1.3	1.6
Empty target normalization	1.2	1.1
Momentum resolution (model dep.)	1.0	1.1
Reconstruction efficiency	0.8	0.2
Kaon PID	0.3	0.1
Secondary interactions	0.2	0.1
PID probability cut	0.2	0.1
Total	8.7	4.7

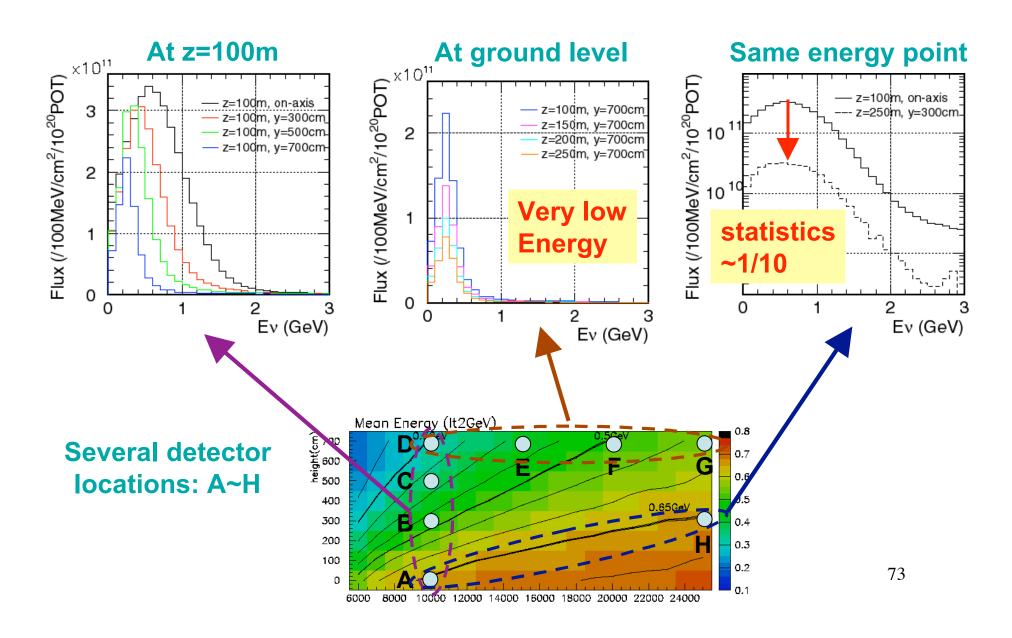
Total:

8.7% 4.7%

17

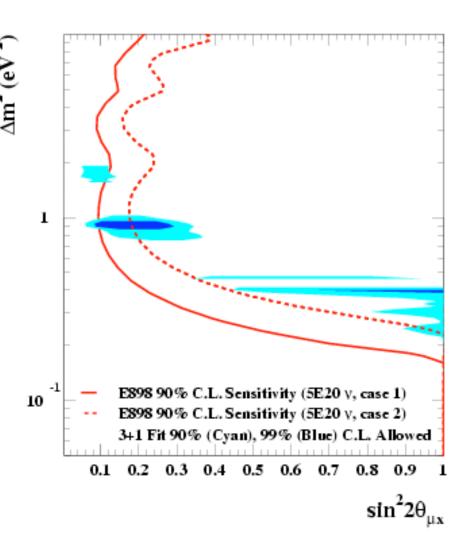
Dominant error contributions:

- Overall normalization
- Momentum scale
- Statistics

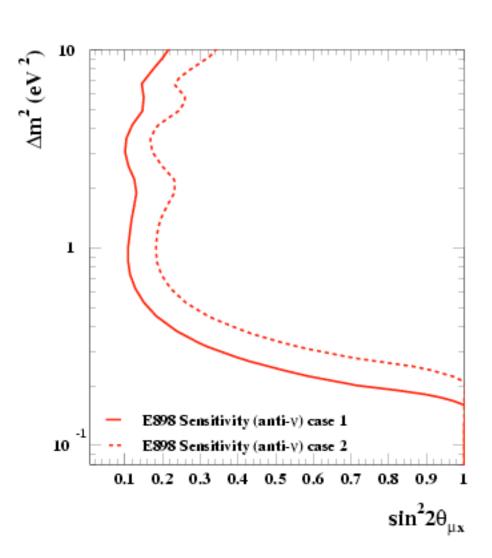

Similar systematics expected for Be

NBI 2005

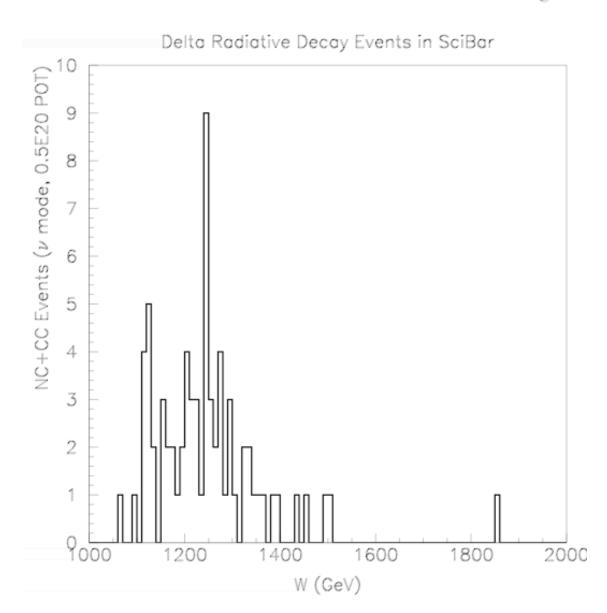
M. Sorel - Valencia University


HARP data taken with thick targets will measure K fluxes

Expected neutrino flux


ν_{μ} Disappearance with MiniBooNE

- Sensitivity curves at right:
 - Case 2: 10% shape and 25% normalization uncertainties
 - Case 1: 5% shape and 10% normalization uncertainties
- Event spectrum shape is most important error source
 - Sensitivity mostly from spectral distortion characteristic of ν oscillations (low $\Delta m2$)
- SciBar measures un-oscillated event energy spectrum $(\Phi \times \sigma)$
 - Both detectors are carbon targets (same σ)
 - MiniBooNE flux acceptance
 w/in SciBooNE flux acceptance



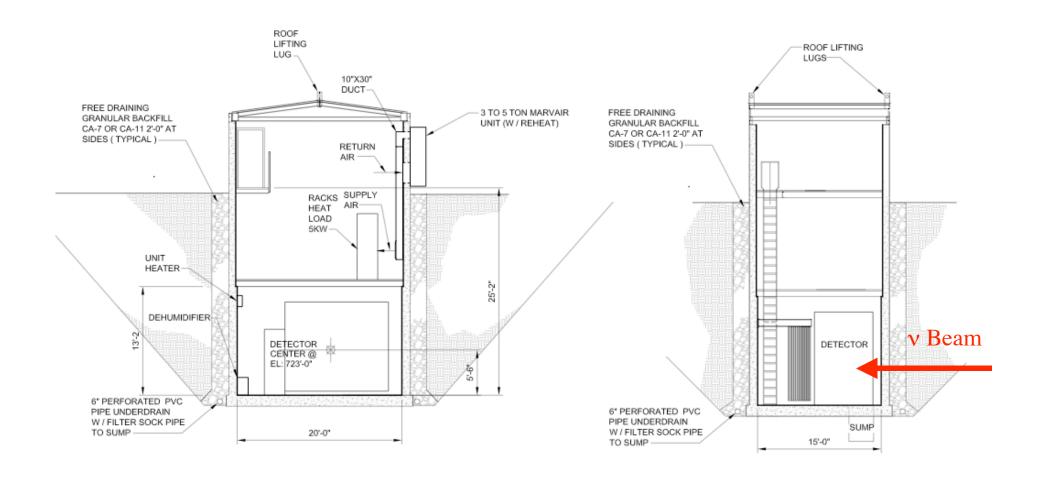
$\overline{\nu}_{\mu}$ Disappearance with MiniBooNE

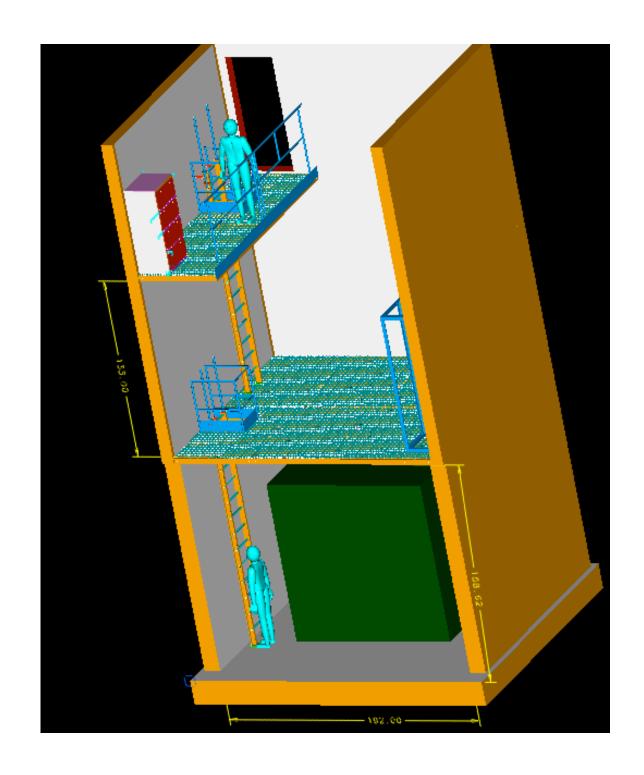
- Need to know spectrum of WS BGs for $\overline{\nu}_{\mu}$ disappearance
 - Must extract energy spectrum of $\overline{\nu}_{\mu}$ events
- MB: 15% uncertainty on WS BG in 4 bins (0-1.5 Gev)
- SB: 7.5% statistical errors in WS (2 track) sample in 4 bins (0-1.5 GeV)
- Shown at right is the ν_{μ} disappearance sensitivity:
 - 5% shape and 10% normalization uncertainties
 - 10% shape and 25% normalization

Radiative Delta Decays

Schedule

ID	0	Task Name	Duration	Start	Finish	2nd Quarter Jan Feb	Mar	rd Quarter Apr May	Jun	4th Quarter	Aug	Sep	1st Quar
1		SCIBAR	147 days	Mon 1/16/06	Wed 8/9/06					-	J		
2		TITLE 2 (DESIGN)	35 days	Mon 1/16/06	Mon 3/6/06	-	TILE	2 (DESIGN)					
3		Design	15 days	Mon 1/16/06	Mon 2/6/06								
4		Comment and Compliance Review	10 days	Tue 2/7/06	Mon 2/20/06	Co	omment an	d Compliance Re	view				
5		Complete Design	10 days	Tue 2/21/06	Mon 3/6/06		h						
6						1							
7		PROCUREMENT	36 days	Tue 3/7/06	Tue 4/25/06			PROCU	REMENT				
8		Start Req/Circulate for Signatures	10 days	Tue 3/7/06	Mon 3/20/06								
9		Assemble Documents	4 days	Tue 3/7/06	Fri 3/10/06					i			
10		Issue RFP	1 day	Tue 3/21/06	Tue 3/21/06		H						
11		RFP Period	20 days	Wed 3/22/06	Tue 4/18/06			RFP Period					
12		Issue NTP	5 days	Wed 4/19/06	Tue 4/25/06		2						
13								D (2.4)					
14		TITLE 3 (CONSTRUCTION)	76 days	Wed 4/26/06	Wed 8/9/06					•	TITLE	E 3(CON	ISTRUCT
15		Shop Drawings	10 days	Wed 4/26/06	Tue 5/9/06			Time .		1			
16		Mobilize	5 days	Wed 4/26/06	Tue 5/2/06			Dh					
17		Excavation	4 days	Wed 5/3/06	Mon 5/8/06								
18		Base Slab	5 days	Tue 5/9/06	Mon 5/15/06			Th.					
19		Lower Wall F/B/P	5 days	Tue 5/16/06	Mon 5/22/06			l th	Sea .	4			
20		Lower Wall Strip Forms	2 days	Tue 5/23/06	Wed 5/24/06								
21		Mid Wall F/B/P	5 days	Thu 5/25/06	Wed 5/31/06				h				
22		Mid Wall Strip Forms	2 days	Thu 6/1/06	Fri 6/2/06			1193	Ğ.				
23		Upper Wall F/B/P	8 days	Mon 6/5/06	Wed 6/14/06								
24		Upper Wall Strip Forms	2 days	Thu 6/15/06	Fri 6/16/06				L				
25		Underdrains/Backfill	5 days	Mon 6/19/06	Fri 6/23/06				D				
26		Paint Walls	5 days	Mon 6/19/06	Fri 6/23/06				1	Ī			
27		Fabricate Roof	13 days	Wed 5/10/06	Fri 5/26/06					1			
28		Install Roof	1 day	Thu 7/6/06	Thu 7/6/06				\perp				
29		Install Electrical/Comm from MI-12	5 days	Thu 6/15/06	Wed 6/21/06								
30		Install Door	1 day	Mon 6/26/06	Mon 6/26/06				11				
31		Fabricate Platforms and Ladders	20 days	Wed 5/10/06	Tue 6/6/06								
32		Install Platforms/Ladders	8 days	Mon 6/26/06	Wed 7/5/06								
33		Electrical	10 days	Thu 7/6/06	Wed 7/19/06	Ì							
34		Mechancial	10 days	Thu 7/6/06	Wed 7/19/06								
35		Fire Detection	10 days	Thu 7/20/06	Wed 8/2/06								
36		Testing/Trim Out	5 days	Thu 8/3/06	Wed 8/9/06						1		


roject Title: SciBar Enclosure				Status: Prel.	Date: 6/9/09	Revision Date 12/2/09
			6 7 61	Rev.1		
						EXTENDED
		DESCRIPTION OF WORK:	QUANITY	UNITS	UNIT PRICE	PRICE
01		SITE CONSTRUCTION \$131.8		011110	GIAIT TIMOL	
		Mobolize	1	Lot	\$ 5,000.00	\$5,00
		Soil Erosion Control	1	Lot	\$ 5,000.00	\$5,00
		Clear and Grub	0.11	Ac.	\$ 5,000.00	\$55
		Remove Topsoil	400	CY	\$ 12.00	\$4,80
		Stone Road & Hardstand	400	cy	\$ 18.00	\$7,20
		Excavate	3150	CY	\$ 12.00	\$37,8
		Backfil	3150	CY	\$ 16.00	\$50,40
		Haul excess materials	2950	CY	\$ 4.00	\$11,80
		2' Stone Along Wall	144	CY	\$ 30.00	\$4,3
		Final Seeding and Grading	1	Lot	\$ 5,000.00	\$5,0
		Concrete \$59,0				
		Mud Slab	3.75	CY	\$ 200.00	\$7
		Base Slab	20	CY	\$ 300.00	\$6,0
		Lower wall at 14"	39.5	CY	\$ 500.00	\$19,7
		Mid Tier Wall at 10"	36	CY	\$ 500.00	\$18,0
		Above Grade Walls	24	CY	\$ 500.00	\$12,0
		Increase for A Grade Exposed Forming	1	Lot	\$ 2,500.00	\$2,5
		Steel \$27,7				
		Floor Framing	1.8	Ton	\$ 3,900.00	\$7,0
		Grating	352	SF	\$ 26.50	\$9,3
		Misc Framing	1	Lot	\$ 2,000.00	\$2,0
		Roof (Hatch) Framing	2.1	Ton	\$ 3,900.00	\$8,1
		Ladder	25	LF	\$ 50.00	\$1,2
		Doors and Moisture protec \$9,3				
		3' x 7' Man door	1	Ea.	\$ 700.00	\$70
		Metal Roofing	390	SF	\$ 12.00	\$4,6
		Semi Rigid Insul	1150	SF	\$ 3.00	\$3,4
		Misc Caulk and Sealants	1	Lot	\$ 500.00	\$50
		Finishes \$14,7				
		Painting Concrete	2350	SF	\$ 3.00	\$7,0
		Painting Steel	1 2050	Lot	\$ 1,800.00	\$1,8
		Dampprooffing	2350	SF	\$ 2.50	\$5,8
		Mechanical & Plumbing \$15,2	70			
		Mechanical & Plumbing \$15,2 Sump Pump (Single sewage package sy		EA	\$ 1,000.00	\$1,0
	-	Install Sump Pump	1	Lot	\$ 206.00	\$20
		Underdrain Piping	70	LF	\$ 9.00	\$6
		PVC Discharge	40	LF	\$ 20.24	\$8
		Dehumidifier	1	EA	\$ 3,775.00	\$3,7
		Condensate Drain Piping	25	LF	\$ 3,773.00	\$3,7
		Unit Heater 5 KW	1	Ea	\$ 550.00	\$5
		Duct (30x10at 18')2.7lbs/sf	400	LB	\$ 6.70	\$2,6
		AC unitfor Racks (basis 5 ton marvair wi	th I 1	Ea	\$ 5,000.00	\$5,0
		Install AC Unit	1	Lot	\$ 300.00	\$3
		III.O. O. III.			2 000.00	
		Fire Detection \$18,0	00			
		Air Sampling Smoke Det.	1	Lot	\$ 12,750.00	\$12,7
		Fire Alarm Control Panel	1	Ea.	\$ 3,500.00	\$3,5
		Manual Pull Station	1	Ea.	\$ 450.00	\$4
		Combination Horn & Strobe	2	Ea.	\$ 650.00	\$1,3
			1		7 223.00	Ţ.,,o.
		Electrical \$42,8	65			
		Trench Power & Comm from MI-12	350	LF	\$ 30.00	\$10,5
		3" Rigid from MI-12 Comm. & Firus	350	LF	\$ 27.00	\$9,4
			350	LF	\$ 27.00	\$9,4
		3" Rigid from MI-12 Power				
		3" Rigid from MI-12 Power Elec Cable	16	CLF	\$ 280.00	\$4.4
		3" Rigid from MI-12 Power Elec Cable 480V Power Disconects				
		Elec Cable	16 2 1	CLF Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00	\$1,5 \$1,8
		Elec Cable 480V Power Disconects	16 2	CLF Ea.	\$ 280.00 \$ 795.00 \$ 400.00	\$1,5 \$1,8
		Elec Cable 480V Power Disconects 120/208V Panelboard (225 Amp) Transformer Utility Outlets	16 2 1	CLF Ea. Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00 \$ 3,645.00	\$1,5 \$1,8 \$3,6
		Elec Cable 480V Power Disconects 120/208V Panelboard (225 Amp) Transformer Utility Outlets	16 2 1 1	CLF Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00 \$ 3,645.00 \$ 100.00	\$1,5 \$1,8 \$3,6 \$3
		Elec Cable 480V Power Disconects 120/208V Paneliboard (225 Amp) Transformer Utility Outlets Lights 4' Fluor.	16 2 1 1 3	CLF Ea. Ea. Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00 \$ 3,645.00	\$1,5 \$1,8 \$3,6 \$3 \$3
		Elec Cable 480V Power Disconects 120/208V Panelboard (225 Amp) Transformer Utility Outlets	16 2 1 1 1 3 3	CLF Ea. Ea. Ea. Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00 \$ 3,645.00 \$ 100.00 \$ 100.00	\$4,44 \$1,53 \$1,83 \$3,6 \$31 \$31
	300	Elec Cable 480V Power Disconects 120/208V Panelboard (225 Amp) Transformer Utility Outlets Lights 4' Fluor. Exit Lights	16 2 1 1 1 3 3	CLF Ea. Ea. Ea. Ea. Ea.	\$ 280.00 \$ 795.00 \$ 400.00 \$ 3,645.00 \$ 100.00 \$ 100.00	\$1,5 \$1,8 \$3,6 \$3 \$3


			Project No.	Status:	Date:	Revision Date:
SciBar End	SciBar Enclosure					12/2/09
				Rev. 1		
	Construction Contract					
	Subtotal					\$317,848
	O&P @20 %					\$63,570
	Anticipated Contract Price	9				\$381,417
	Project Overheads					
	EDIA @21%					\$80,098
	Subtotal					\$461,515
	Contingency and Managem	ent Reserve @	20%			\$92,303
	Other Overhead (G&A)					\$94,757
	Plant Project Total					\$648,576

Civil Construction Cost Breakdown

Indirect rates
CSS 18.5%
MSA 5.5%
G&A 10.0%

EDIA		
	In-House A/E	80,098 0
Construction		381,417
Mgt. Reserve		92,303
	Subtotal	553,818
Indirect		94,757
Total Project		\$648,576

